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NOTE ON THE FORMULATION OF FINITE DIFFERENCE EQUATIONS 
INCORPORATING A MAP SCALE FACTOR 

FREDERICK G. SHUMAN and JOHN D. STACKPOLE 

National  Meteorological Center, Weother Bureau, ESSA, Washington, D.C. 

ABSTRACT 

Numerical experimentation with various finite difference formulations of a particular set of differential equations 
incorporating a m’ap scale factor indicates that  the stability of the calculations is as dependent upon the manner 
in which the map factor is introduced as the form in which the dynamic terms of the equations are written. 

1. INTRODUCTION 
Some years ago Shuman [l] studied the nonlinear, 

computational instability of various finite difference for- 
mulations of the equations describing external gravity 
waves in a longitudinally bounded region of homogeneous 
incompressible fluid of infinite lateral extent. His study 
was an adjunct to a more general study of numerical 
experimentation with primitive equations and had the 
purpose of suggesting what finite difference formulation 
would be most appropriate for the full set of hemispheric 
prediction equations. In figure 1, Plates 1 and 2 taken 
directly from Shuman’s paper, show: on Plate 1, the dif- 
ferential equations, finite difference net and formulations, 
the boundary conditions, and a trigonometric formulation 
for the waves; on Plate 2, the various finite difference 
formulations investigated by Shuman. His study indicated 
that only the semi-momentum and filtered factor forms 
were sufficiently well behaved to merit further considera- 
tion and adaptation to the full three dimensional predic- 
tion equations. 

The full set of equations, being hemispheric, include a 
map factor appropriate to  the projection employed. The 
mode of inclusion of this factor into the finite difference 
equations was not given any particular consideration other 
than to  maintain the three dimensional analog to the 
one dimensional form as much as possible. Recent diE- 
culties in integrating the hemispheric equations for ex- 
tended times have led to  the suspicion that further, more 
detailed, consideration should be given to the precise 
method of inclusion of the map factor. To this end the 
external gravity wave equations mere rewritten with a 
map factor included and a number of finite difference 
formulations investigated numerically. 

9. FINITE DIFFERENCE FORMULATIONS 
On a projection vi th  map factor m the differential 

equations of Plate 1 (fig. 1) become 

bh. b -+m at - ax (uh)=O 

and the various finite difference formulations which were 
studied are exhibited below: 

Semi-Momentum I :  

-2 -2 
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h,+m u h2+m h u2=0 

Semi-Momentum II: 
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Filtered Factor I: 
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-1  -22-2 -Z--z 
h,+mu h,+mh u,=O 
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DIFFERENTIAL EQUATIONS : 

a u  au  ail 
-+u-+g-=o at ax ax 
ah ah 'au -+ u- + 11- = 0 at ax ax 

1 
FINITE-DIFFERENCE N E T  : 

/-wall ,wall 

- L O  1 2  

/I 
p - i  

p.2 p-I  

. x  t 

IEFINE : 

1 
Z'= - p a + l ,  2+ U"-1/2) 

1 
A t  Ut  = -(Id" +1/2- U"-l/ 2) 

BOUNDARY CONDITIONS : 

- 1 1 ~E=h,=o at ;=--, p-? 

THESE SUGGEST TRIGONOMETRIC 
ANALYSES IN THE FORM : 

2 

P nk (i+ l/2) 

k-1  P u= Uksin 

P-1 z k ( i + ' / z )  
k - 0  P Plate 1 

h= HLCOS 

MOMENTUM FORM 
--I - e  

(hu)t+ (huu),+ g h C =  0 

(hU)'+ (huu),+ * g ( a x = O  
lit+ (h&O 

?it+ t(uY):+g7;:=0 
ii:+ ( h u ) , e = O  

a:+ up,+ g ii, = 0 
E:+ uz:+ /la:= 0 

ii:+?i=ii:+gIi;=o 
IZ+?i4:+iimii:=0 

or 
- c  - E  

SEMGMOMENTUM FORM 

ADVECTIVE FORM 
e ,  

FILTERED FACTOR FORM 

THE FILTERED FACTOR FORM 
CAN BE WRITTEN ' 
?ii+ f ( ?iEii5),+ gZ:=O 
E:+ (ii"ii5),=0 Plate 2 

FIGURE 1.-Plates 1 and 2, reproduced from [l]. 

Filtered Factor 11: 

-1 122-21-2  -zz-z 
u,+m u u,+gm h,=O 

-1 -22-zz-2 -21-22-2 

hl+m u h,+m h u2=0 

Smagorinsky-Momentum: . 

-1 -22-2 

h,+m (hu),=O 

Arakawa-Momentum: 

The Semi-Momentum I form is the one most closely 
resemblingt he manner in which the three dimensional 
equations were formulated while the Semi-Momentum I1 
form represents a sort of simplification of the previous 
one. The two filtered factor forms were included for com- 
pleteness. Finally, the Smagorinsky-Momentum [2] and 
Arakawa-Momentum [3, 41 forms were added to the 
collection for study as these are the forms used by other 
investigators doing long time integrations of atmospheric 
models. 

3. NUMERICAL EXPERIMENTATION 

These various formulations were programed to run on 
the National Meteorological Center machine with various 
initial conditions similar to  those used by Shuman, i.e., 
the initial height of the fluid a constant equal to 25,000 
ft., time increment At equal to 10 min., space increment 
Ax equal to 381 km., and p the number of grid points 
between the bounding walls equal to 24. For the calcula- 
tions described here, the map factor was that for a polar 
stereographic projection true a t  60"N. : 

with 4 the latitude; this was specified for the grid points 
such that the points outside the wall (i.e., p=-1 and 
24 in Plate 1 of fig. 1) were projected to fall on the Pole 
and the Equator. In this context then the x coordinate 
of the equations may be considered as the north-south 
coordinate on a nonrotating earth. The initial time step 
is an uncentered forward difference and the initial veloci- 
ties are read in terms of a table of 24 Fourier components 
Uk and these are synthesized according to the formula of 
Plate 1 (without any map factor) to give wind speeds u 
at the grid points. Four types of wind speed input data 
were used: "High Energy Wave 1" in which U1=54.6 
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m. see.-’ and all the other Fourier components were zero; 
“X High Energy Wave 1,” u1==25.0 m. see.-’ and ?YE 
=0, k=2,24; “White Noise” in which all the U&’s equaled 
2.18 m. see.-’; and “White Noise less no. 24,” the same 
as “White Noise” except that U,,=O. 

Once begun the integrations were programed to continue 
until one of the following occurred: a) Fj0,OOO time steps 
were achieved (this is roughly 347 days, which would 
seem sufficiently long) ; b) computational instability arose 
as evidenced by (1) the depth becoming negative (under 
this condition the dijerential equations are unstable) or 
(2) the height or wind speed exceed 100 times their initial 
or RMS values respectively. 

Perhaps the most efficient way of studying and com- 
paring the integrations with different initial conditions is 
in terms of the energetics of the flows. To this end the 
program computed the available potential energy (per 
unit mass) 

and kinetic energy (per unit mass) 

(the formulae are from Shuman [l]) in which g is the 
acceleration of gravity; p is the number of grid points 
within the walls; hi is the fluid depth at  the ith grid point; 
H ,  is the spectral amplitude of wave number zero, Le., 
the initial mean height of the fluid; ut  is the wind speed 
at the i th grid point; and 77, is the velocity spectral ampli- 
tude for wave number p (subject to  truncation error and 
hence dealt with separately). The machine was programed 
to print out a graphical display of the energy record and 
figure 2 (prepared by the computer) is such a record for 
the first 200 steps (-J 33 hr.) of an integration using the 
Semi-Momentum I1 form for the finite differencing and 
the “High Energy Wave no. 1” initial conditions. The 
total energy column is the algebraic sum of P and K and 
on the graph is indicated by T. The total energy remains 
admirably constant during the period presented and a 
straight forward and initially almost complete conversion 
of kinetic to  potential energy and back is seen as a conse- 
quence of the fluid sloshing back and forth. Evidence of 
the nonlinear interactions inducing modes of flow other 
than the initial conditions may be seen in the slight 
jaggedness in the P and K records near step no. 170. 
Inspection of the corresponding records for the other 
finite difference formulations with the same initial con- 
ditions shows them to be much the same for the same 
period as are the sets of records for the other initial 
conditions. 

The close similarity does not remain for long however. 
Figure 3 shows the continuation of the energy records 
for another 200 steps for the Semi-Momentum I and I1 
cases and, in contrast, the Arakama-hilomentum formu- 
lation. Again, the Semi-Momentum I1 case shows quite 

satisfactory conservation of the total energy while Semi- 
Momentum I does not nor does the Arakawa-Momentum 
case. (The energy graphs were printed modulo the width 

STEP 
NO. 
1 

2: 

50 

75 

too 

I25 

150 

175 

200 

Y L  I P  

j l -  

‘ - - - -POTENTIAL ENERGY 

‘ ,  

TOTAL ENERGY- 

“ I  K D  

FIGURE 2 -Relative energetics on linear scale, steps 1-200, Serni- 
Momentum I1 form. Initial: High Energy Wave 1. 
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FIGURE 3.-Relative energetics on linear scale, steps 201-400. Initial: High Energy Wave 1. (a) Semi-Momentum I1 form. (b) Semi- 
Momentum I form. (e)  Arakawa-Momentum form. 

of the printed page so the appearance of the ('T's" on the 
left should be interpreted as a continuation of the record 
off the right-hand side of the figure.) The behavior of 
the Arakawa-Momentum case was sufficiently violent 
that the flow violated the negative depth criterion at  
step No. 477 and the integration was terminated; SezLymen-  

the Semi-Momentum I flow continued to step No. Se,m;Tmen- 
6,032 before violating the same criterion while the Semi- 
Momentum I1 case continued without difficulty through 
50,000 steps. The Smagorinsky-Momentum form be- 
haved similarly to  the Arakawa-Momentum calculations 
although it was somewhat more viable, vide table 1. 

It cannot be said that the 50,000-step forecast had 
any physical meaning. By the time step 2,000 was reached 
the Semi-Momentum I1 case was already showing con- 
siderable alternation in the total (and component) ener- 

Formulation 

Filtered Factor I 

Filtered Factor 
11 

sgpxx?~ 
Arakawa- 

Momentum 

TABLE 1.-Summary of results 

High 
energy no. 1 

";;'OB 
Stable thru 
5w@J 

Dry @ 
3,511 

"?A? 

Dry @ 477 

Initial conditions 

High 
energy no. 1 

Dry @ 

Dry 0 

22,404 

50,000 

11,377 

Stable thrn 

Dry @ 
18,373 

Dry @ 

Dry @ 
6,275 

1,970 

White noise 

Dry @ 17,986 

Stable thru 50,000 

u> urnor @ 28,111 
2-3 orders of 
magnitude 
energy in- 
creases 

Stable thru 50,000 
2-3 orders of 
magnitude 
energy in- 
crease 

u> urnor @ 11,006 

U> Urn.. @ 297 

~~ 

White noise 
less no. 24 

Dry @ 14,304 

Stable thru 50,WO 

u> umaz 0 27 015 
2-3 orders o i  
magnitude 
energy in- 
crease 

Stable thru 50.000 
2-3 orders of 
magnitude 
energy in- 
crease 

U> urnor @ 11,340 

U> urnor @ 289 

gies between odd and even time steps. This phenomenon 
can be seen also in the later stages of the Arakawa- 
Momentum calculation of figure 3(c). By the time 50,000 
steps were reached the energy graphs were completely 
incoherent with total energy variations of a factor of 
two or so from one time step t o  the next. However, and 

this is the more significant point, the average energy had 
increased by no more than 15 percent during the integra- 
tion indicating the inherent stability of this particular 
finite difference formulation. 

Table 1 is a summary of the ultimate behavior of the 
various combinations of finite-difference formulations and 
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initial conditions investigated. “Dry” indicates that the 
negative depth criterion was violated at  the step number 
indicated. The noted large increase of energy for the two 
filtered factor forms that either continued through or 
almost reached 50,000 steps is consistent with the observa- 
tion by Shuman that his filtered factor form showed an 
increase in energy during the relatively short integration 
times he considered. It is obvious that the Semi-Momen- 
tum I1 formulation should be the one chosen to serve as 
guidance in the formulation of three dimensional finite- 
difference equations, in which gravity wave motion may 
be of importance in the absence of other constraints upon 
the flow, and long time integrations are contemplated. 

It is realized that conservation of energy is not the 
ultimate requirement for success in finite-difference calcu- 
lations but it is necessary, and we have used it here as a 
guide which we trust will prove helpful. The problem of 
the separation of odd and even time steps is one of obvious 
importance, Arakawa [4] has dealt with it by making a 
centered forward time step at  regular intervals. We felt 
this to be of considerable interest but not germane to our 
present effort which was the investigation of the effects 
of various space differencing methods. Finally, Arakawa 
mentions that in his most recent work he is making use 
of another space differencing method which was not 
available to us at  the times the above work was done. 

4. COMMENTARY 
In the absence of any well-developed theory of nonlinear 

and finite difference stability one is hard pressed to  offer 
any complete explanation of the behavior of the various 
formulations. A couple of observations are possible which 
may serve in a practical manner as partial guidance for the 
finite difference formulations of more complete equations. 

In statistical terms it is very familiar that the covariance 
of two quantities x and y may be written as 

x‘y’=xy--5 y 
- - -- 

where the overbar indicates a sample or population mean 
and the prime denotes the departure of an individual mem- 
ber from that mean. Now considering the overbars of the 
finite difference notation as indicating averages (over a 
sample of only two elements to be sure) it is easy to see 
that the only difference between the Semi-Momentum I 
and I1 forms is that the latter neglects the (local, two grid 
point) covariances of 6” with G“, u,, h, and (hu)., while the 
former implicity includes them. That these covariances are 
small is evidenced by the similarity of the integrations 
during their early stages alluded to previously; that they 
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are of major importance in a cumulative manner is, of 
course, evidenced by the ultimate fate of the computations. 
Suppressing the covariances between the map factor term 
and the dynamic terms resulted in stabilization of the 
integrations. 

In  addition, one notes that the Filtered Factor I1 
equations disregard similar covariance terms between the 
map factor and dynamic quantities which are included in 
the Filtered Factor I equations. A glance at  table 1 shows 
that indeed the former set of equations behaves in a 
somewhat more stable manner than the latter. 

Comparison of the Smagorinsky- and Arakawa-Momen- 
tum formulations in these same terms points up a some- 
what different result. In  both these formulations the map 
factor-dynamic covariance is suppressed and the difference 
lies in the advective terms. In the Arakawa formulation the 
h-u local covariances are suppressed while they are 
included in the Smagorinsky form. TaSle 1 indicates that 
the latter formulation is the better behaved. Comparison- 
of the results for Semi-Momentum I1 and Filtered 
Factor I1 points to  the same conclusion: that the stability 
of the integrations is enhanced by the inclusion of the 
covariances between the dynamic terms themselves. The 
comparison between Semi-Momentum I and Filtered 
Factor I is not so clear cut but this can be perhaps ac- 
counted for by noting the destabilizing effect of the map 
factor covariances present in both formulations. 

If we may draw a general rule to use in generalizing from 
these results, it would appear quite obviously that inclu- 
sion of dynamic interactions as completely as possible, i.e., 
the covariances between the u’s  and h’s is appropriate and 
desirable while the interactions between such artificial 
parameters as the map factor and the dynamic quantities 
should be suppressed as much as possible consistent with 
the original differential equations. 
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